Unbiased look at the Sint Maarten Elections
DLPONjbziJg00/PvAt01aUaAknA6ARWGZLrQAdICc0QDtlbaKXvAonTS0HdJAy4oIvtMKCjdh+BPXeZEH+Rso8UdR0UnAAOzEIQ3lpjzQMj3KSXt1vVA28sDAD50BRjGAMuvggBs2u79xA8LkTVxG4gA3o3hvimMU77P8lB1FTicD3qgPeOWbNOTR3zesjoNG5aMHY3TiSEwfOKtNXTPRMXkwtgsks7v6o1Xr4zt1LevGmb3xC1s/Ga+u2R43rgzGz5bcEhk3XRcZ1+bEb3y0Jz6443Csb7g7NjSeiM3Ny9G69HAM6kKXhUefjC5tptt7Ure0adPc3iOHNHW9GKNHD8fM8ZXkjPmEboJjVO5y4h7SpTWTukwGIMcw7X7o6EocOn40Zg8qvW6Wo7PTo1fZBnTTW29nX3RopqGuvjmq9dLZHm3Am+hd0jG6L+po3lOxeO7/0utq2ix39Nsx/cQPonrpcIydPxmf++LnY3zqSDTNPhm//NGuyHh9Sbw1W9fR3vdVbX7TXQ471kVLqa4g3rwh6nSJTGFJi+5g74iGXl0kU6Bz6LU9Ud0xFjdvKohXvOl3dK1rZWQXV0TmzqJkdJ4l+f5PQL8MdPx+GB51ydYIvaKxLfJKK6NZN/fxncM0vHbB59I+fgjoT2+M0+g8R7MDLAcwQsffMua25zaHfNJ5Ra6QW8KRa9oa7Ys2z/fVDHFp48SBLjLr9g69tAzjJg4yTn4Y2gLtErnDdnvHhj/iQI/6eO5znxsZZMZZdJQwx9VoHDDKKBnFUNUENgAAIABJREFUk1ayKEAUsAGdNCgqRslUCoDJKJv0xKHQhJPhV77ylfj+97+fMAxNehs0WBowaciXuORLPvCFcsSNIkwrRL7JgzhUAG5owg90qCjKBA9PPfVUUmjK4pkD4sAbCoQGbgVBpTgMnqlY6NuPfJ2P68XAtZZt4KAcTvujAB5x0wYazhuaNvZPx8WdDk+HmYZBxvyZjtMRjqH+DVb+LZzWZSSt5YO6xpjeWjY8OYw8oeX8yIff1ob803kTzzytZZsWNNwZgYZ5dn6kJxy5wHZea9Fdy9+82nY85w99G/KhESOvyJkVVdp24wZcMDRw5BVDYwaU8ScetGiHyC5tA4Ps4ocbf+KQjjQoBOhA0yCbHpGjzHhVDEAjPkrJNMmPdPg5T+jjxo98XS6XwXxDC+UEQAKcgDCdCI/OseHHdYNtetQN9Kgv/PkmH2zqgpG0R+aMWD1qndF0NIBOfozKcRsAsQE3gJDyAtjQAcSJi203dcEIncFCe1t3TAu8R4Zm9QTq6ais79GZ6v3Rf+BEHHj489GycipyNYovO3Y8qu+9EHcuTsTr64viTe3lkXHnByPjo5+IjJ/XYyevKou3b1mKX7quM152y564peN89F74bhz54t/F0PkvReWcNtR99ovRcffFaBIgTz2sM+HnNU2vq1wPi/a8rpZl9oGLZTCUmUdekrX4H4I6o/OjJ0/E4RPHEkAfHtfO+/7e2N+vnf3qnIwOjWtkP6Gl0r6or2yO1orG6K/XbXjtM9E7cDqq+jUVPvZ4FE49HBOP/0Hc2aRd9/ecj7svnIkDC8d0Bv3uuKXpdPzU+6piy8jDMXTqM1FQpdH+zk1RlqX73XdJ7tffGRU1rXFXti5CGpiMgtqOaOwai6KKjujdOx93ZeZHU+dQbM0tSACZtXHAnE1vvJvO5rb/HKnjr85idUNUtnTFJ+7YqItxemNnmQC4pj7yeJ51Z4Eeb2ENnuNpAK+mtgXojNBzdYNcckVsaoRuebWsIa/gE/Jm2Xc7wqYdI+9XM8QhLumhT1z8yIN2gB9uDG63a8s4OIkM0qkG1GkXtDtkPT1Thvz/1E/9VGSgRFG8NBCmzlGAEE8rZCs94qKADegoYsCYjWk0LitC0kOLuCgICsAfG+9Yp+ebcJiAJh0CaEIPQDcP0CFvFDCKEX/iY3DjR1qm84lrP+JDDz/+WMfnh0GpwitTUigfKgv+qFh4odLhDUN5SEMl2x/68JgGobWA3P4GDnh2WtI7HL+rGeKmjeO6HmzbPx0Xd9qfPB2Ov+vRPOKXTuO0jku8dFz7Ox30qXfLDrKRprGW22WANnXs35vfF5nC8NsZHAknnn9v+1/JNk3T4rc1PdPBNuBi8+1yXolm2s98kCZtHIey4U++yBFyhUxhI5/IHY3Xhm83cuITh2/8DWL2hwaNnYZtOYaO05MWOXe7xMYPpYHMoxyIy7cBHUUBoNI2DH7YKBPycCcAxUQZ08oszRd04dfh5Mu38wbMAUkAslX7bQB08vRoBDftD17IE375hk++sfl2fZEfio76YP0bcPYlMOz+5iY1NouxA5x1Zj9tmn4eFSBk6prpemhg6GzAHyCPAcy9K76+qi4mdCSto6YtVg6eiCGdOe/WMbDB5RPRdVi72fW8acWhU5F34Gi8Qa+FvVWXqPz0LXdExg03xnNvuTV+9Y78yPiNLfG8V+2OjN+uiYw3F8YLbtN6cu5MXF93Jl5+fX28/BMV8er1NbHrxMORdepiZC6txOSXvhKDx89H3+RCnDx7IY6tHE0uujl+/HisrKxc3rDHdLt2zO+bGH96Yxzr6OxuZ/qeKffhkf5YGB+IuX16LU678vf0T0ZNXY+uUtXmrW3ZUZGjwdKdG/SU6uHIapuK3NHT8cbt9bH/C9+LoXsejAP33B3Hjx4TqD8QHbPnYuDur8Unmxaj7dSTUaYNboV6ya1kp9bQt92cbIDbnqN9SUWFsa1od3IVbLWWJ0orWnSnen5U6fW1hYPHdZ98i47ZLcauouJk17rBHEBPDOCcp5krjc6z8iQfil9Q0xTXfvQGdSDqNEVfHMU1dck0fJYAf7um5rdpxztg7il3pt1ztqstMFpfNUJHRpFV2hayik0bQi9gaMfuuFq2r2Y7LnTcHgB45Jb2ZPklDBlH7mnPtAPkG0ObJC42PJGGTrnbBfzy/fznPz8yaAiAIsqYBgrT3okO81baKC6UHArfwICyQoGTDjdxUeZ8u3PApTVMycPg3/zN38R//Md/JDvQaRTQQQnAJNPvpmMFDyDgJm+UIjZ5GHTgh/zgHzrEpbIwVDJ0KQ/7A77zne8kvW5G7lQIZaOS4AvlgCIkjX80fgAqCVrExR8eXE4D4zPZjp8Gs3SatP+V3GvFhW7apNOuTpP+xk1c0vr3xM+/qcNc5/inwwh3fPunv/FDJmzSfF3JbT7gxXlaDqnz1YawH8WkaQJo/JZpk6YPXcsZ/MDbM+UF/dWGtDbUDTRp2G6IyJUbJn4Gc2y+kT1kEdkzMNLgcSPnGOIQFwADcAFIGjy0HZf45OsODPQIIw7gBw+EW5kAnrQJgzmjApQL9JmKJy/C3S4ot5UZPKFYMPCGIX+Xg3z4Jk/aGzQBSvQANsDuPMjT4O7OCmUzmOM2qFMOFCF+xGWJgA47U+yMVgFvDO+SexR7StPgfGOIx+iduAA/o3XSG9SZgmd6Ppli10iWaXqm6KmbGtVFW/nuqNPxqumRvXH/fQ8kD7OMHjkVFbqwpV5gvmNiOa5rGoiMN7w3fmtbRVxT2hG/dmdBvPD6rfFTb18fz3nxpnjBb5ZGxosA+u54x8Bn4+WlR2Pb/m/FSz/aGRmvzYpXbu3Tue8/i12f/1Z8SGv2HU98NSbv/XwsnX44zt19KS6cOx8XLlxILrw5evRoAuhsiJvXZTKebmfKPbnTXa+9sYbOxri5xf0xP9WnM+0q4/B41Hfsi/yStti2VVPVGzdEadZdUVulUxVNu+P60vLofvh346b+6fhE+1CUzej99ZOn44BeiDt27FyMHD4bo/c8FsP3PREdR85Hbk2zRse61Ch7S1SWaR/F7lxttGuPO3dsjRrNblz3iVuipqo1ivXOeUV5Y+zXOf2TJ85pXbtYexMmo7q2Jjlfzqj8aTAH1AXml02+puR1hE7T89mlNXH9Hbp8Se5129WhLdIa+g7t/tYOedbSt2ZdnkUyoG/L1P6oTD0Ypg1y2zIvd/Dd1twGkVPkCnu1HCPTyDs2cn014/bh9kA64pMPbYk8aE8YvpkZok0gx7QH0hGXcPNCG0u3Y/IgTjJCR/Gg1ABGRrqAKEqMjFnDRiGhiK2grNBRdjRo/MmIuIx+GWFDg/V4GCeeC/8BnVFnSov3zb/4xS8mZ8X//M//PDkuR6UBBqSjE2CQABhwQweD2zzxTUHpgKC0KAOFdQVTLirl29/+djJSxx8/FDo9H9woBAwVAp9W9sSloqysUcpW9uRLPaQBzXxdzV4NaKaz2j/9naaX9idt2qTDrpTGfsQjHb8bZbN/uizp8LS/80inMXATz8bh2E6zlm25ghfqF9njd8Hwm6YB1f62V4en49rtuP7GNm0DHX7+fdN2Os3V3E7j9kCZ0r8N+dEwkTNAyY0YmXNDN7Bj0xaQY+TPjZ24NGLiuzGbFjaGuKRFjjHExXZ74Js48AEN6CPv+OMHKBrQ6SBgDKjQhwf4Mm3ycjuBlvNN28QnDxQm+UCDvBjxA+RMXTNSB+BRZhjPBuCHAdwBcNosdefy4qZDTkeD0TPg67VkXjc7fPhwAtgAOSNyNsbN6bgZgI4fI3ZPvfONYc2dO9sBcNPj2wZwZ+SOwu1s1GhVL6eNN9ZEX21lDPbopjlN3TcOj8aERq17tFv95Z/KjFffpV3ib7kxXnZjYbzmVo3EX3urNo99Ml52bVE892e12/2Xt2ktvTIyPtkZL2m6ED+942C8p+6ReMl1w5Hxml3xi3cMxo1nvh4fv+8r8dLWEe2UZ339C3HwxGfiwj2PxKV774t7771XV9GeTl51S5YSNNW+oB3u7HJfOnI4MYD7mI6/TWgHfWL2a6PgpDb47WvXi27DUdI8FNsLW2J7dmlUFeRGd4NAreim6JzRMbDD49H75BNRevFS7Fo5GyMPPhbtc8t6LU3XtRZVRWFrW+T3dMToBZ1B36cTBE2Nye+cpZFxbX1VbC3NiY6ZwcipK9bTri1x6813RF2p9mtUNcWRg0fjS1/4imYajmvjHOf/GWQJrPXgSm6ewEvGoJ4lrEmMRt8A+pa80tiUXyYwrxKwV0WWRv+ltU2RqfCtGsXz3jqAjkyy051ROSN0A3qmdr6jB5Bj2gRYhozSTpAz2gRyRxiybAM9ZN5tay0bubf8O43bAvJLG8MmT/Kjo4gse++KeYIf4vCNjnB7JY3bdTJCB4RRRJ42RxEBkDAIQKKkUcZWvFbMfKPIAHAYAtBhFMVHGoDZNhXykY98JGGGvL7+9a8nAMsROUbs//zP/5xUqjsT5E88OhjwBR8GB4OFQQc+4YHC4kc60sMHhYdfKoeLbogDjygtlBEVww9kZUrFQI8fgPTQSpffipuyQ5cw87OWTZx0PNJZ2ZuO6/RKdppuOtw0bKfD1krjOORL2SgPNgY6pDO/tk2LtOm87M9vkwZ1/FfHdb5Xss2L+aHe04DrOre/w/iN/DsRtpZxgyKcPJwfdJ3G9eAw/GnklmfHu5INPxjC0nSoK8pLnvCJLNJOUBA0QhoofigFZBA38mmFwjcyip9BHoWAfBKfeNBxeuLiD8/mnTD7EwYt2iLKgG94Jj5u0/PIl3jwSHraBXHIm/jmgTB/b9v6w/XzzB8quS2XZ8qyt19+xGXzxssbiHKzL0/F88Y10+xtHe2adpUSLi9TO9XopF13kVepMyGl3tzUoDisY2sKcrem3kt1b7fqj5kE0mNwM7oHaAFnQBtQBqwBdUbngDhT0YQxGj9x4kTiTtbYtaFsfJQ727WGrqdHB/Uq2rBe/uIdc0aKg4PDieG1NDoLfbpKlVvYurmFTW+F99dXxAE9a7p/pDfydm6LY/eciu168nT47Ll48ce0Pq4npTNu+FhkvO8tkfGBt8XP3H5zZFwj/9+4Id50XXu8/K2V8ZxX5sVt+74QGbd2xc8WLcRbOx+Mn7muPzLeWB0Z/4eOgr2pLH5O/u849LvxlsUHo+Hb/xhTX/yb6F3+dBy79Ltx/oHH4uy9D8Xho6diXI/CcJf8uJ5tPbioF9cmpuLAgaU4rOdU5/Qs6qiO2Q2oHto101DbVKOHY9pUJm18bN8T+VUd2oxWq2